Affiliation:
1. School of Science, Nanchang University, Nanchang 330031, P. R. China
2. School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, P. R. China
Abstract
In biological development, morphogens are locally produced and spread to other regions in organs, forming gradients that control the inter-related pattern and growth of developing organs. Mechanisms of morphogen transport were built and investigated by numerical simulations in [A. D. Lander, Q. Nie and F. Y. M. Wan, Do morphogen gradients arise by diffusion? Developmental Cell2 (2002) 785–796]. In that paper, model C, which considers endocytosis, exocytosis and receptor synthesis and degradation, is in a one-dimensional spatial region and couples a partial differential equation with ordinary differential equations. Here, this model is promoted to an arbitrary dimension bounded region. We prove existence, uniqueness and non-negativity of a global solution for this advanced model, of its steady-state solution and linear stability of steady state by operator semigroup, the Schauder theorem and local perturbation method. Our results improve previous results for this model in a one dimension region.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献