Mathematical modeling and assessment of barrier measures and temperature on the transmission and persistence of Novel coronavirus disease 2019 (COVID-19)

Author:

Dangbé Ezekiel1,Perasso Antoine2,Irépran Damakoa3

Affiliation:

1. The University Institute of Technology, University of Ngaoundéré (Cameroon), P. O. Box 455 Ngaoundéré, Cameroon

2. UMR6249 Chrono-environment Laboratory, University of Franche-Comté (France), 16 route de Gray, F-25030 Besançon cedex, France

3. The Faculty of Sciences of University, University of Ngaoundéré (Cameroon), P. O. Box 454 Ngaoundéré, Cameroon

Abstract

In December 2019, human cases of novel coronavirus infection were detected in Wuhan, China which have been named as COVID-19 by the World Health Organization (WHO). Since COVID-19 was first detected in China, the virus has reached more than 120 countries and was declared a global pandemic on March 11, 2020 by the WHO. In this paper, we have highlighted the influence of temperature on the spread of COVID-19. For this, the dynamic transmission of COVID-19 is modeled taking into account the influence of the temperature on the persistence of coronavirus in the environment. We also took into account the impact of proportion of people who respect the barrier measures published by the WHO on the scale of the COVID-19 pandemic. Taking into account the influence of the temperature on the persistence of the virus in the environment, the dynamic transmission has been described by a system of ordinary differential equations (ODEs). First, we analyzed the solutions of system in the case where the impact of the temperature on the virus is neglected. Second, we carried out the mathematical analysis of the solutions of the system in the non-autonomous case. Mathematical analyzes have enabled us to establish that the temperature and proportion of persons who respect the barrier rules can affect the spread of COVID-19. Some numerical simulations have been proposed to illustrate the behavior of the pandemic in some countries.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3