MULTISTAGE FILTERS FOR IDENTIFICATION OF EUKARYOTIC PROTEIN CODING REGIONS

Author:

HOTA MALAYA KUMAR1,SRIVASTAVA VINAY KUMAR1

Affiliation:

1. Department of Electronics and Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad-211004, Uttar Pradesh, India

Abstract

A class of multistage filters, namely, real narrowband bandpass filter (RNBPF) has been previously used for identification of protein coding regions. This filter passes the frequency component at 2π/3 along with its conjugate. This conjugate frequency component may degrade the identification accuracy. To improve the identification accuracy, two types of multistage filters are proposed in this paper. A complex narrowband bandpass filter (CNBPF) is proposed for suppressing the conjugate frequency component which, in turn, reduces the background noise present in the deoxyribonucleic acid (DNA) spectrum and improves identification accuracy. By cascading RNBPF with moving average filter (RNBPFMA), another type of multistage filter is proposed. As moving average filter smooth out the rapid variations in the DNA spectrum, RNBPFMA improves the identification accuracy. The computational complexity of RNBPFMA is less than that of CNBPF. The RNBPF and proposed multistage filters are compared with previously reported short-time discrete Fourier transform (ST-DFT) method in terms of computational complexity. It is found that multistage filters reduce the computational load to a greater extent compared to ST-DFT method. The identification accuracy of the proposed CNBPF and RNBPFMA methods is compared with existing anti-notch filter and RNBPF methods. The results show that proposed methods outperform existing methods in terms of identification accuracy for benchmark data sets.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3