Affiliation:
1. Department of Mathematics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
Abstract
In this paper, bifurcations and chaos control in a discrete-time Lotka–Volterra predator–prey model have been studied in quadrant-[Formula: see text]. It is shown that for all parametric values, model has boundary equilibria: [Formula: see text], and the unique positive equilibrium point: [Formula: see text] if [Formula: see text]. By Linearization method, we explored the local dynamics along with different topological classifications about equilibria. We also explored the boundedness of positive solution, global dynamics, and existence of prime-period and periodic points of the model. It is explored that flip bifurcation occurs about boundary equilibria: [Formula: see text], and also there exists a flip bifurcation when parameters of the discrete-time model vary in a small neighborhood of [Formula: see text]. Further, it is also explored that about [Formula: see text] the model undergoes a N–S bifurcation, and meanwhile a stable close invariant curves appears. From the perspective of biology, these curves imply that between predator and prey populations, there exist periodic or quasi-periodic oscillations. Some simulations are presented to illustrate not only main results but also reveals the complex dynamics such as the orbits of period-2,3,13,15,17 and 23. The Maximum Lyapunov exponents as well as fractal dimension are computed numerically to justify the chaotic behaviors in the model. Finally, feedback control method is applied to stabilize chaos existing in the model.
Funder
Higher Education Commission of Pakistan
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献