Mathematical modeling of contact tracing as a control strategy of Ebola virus disease

Author:

Berge T.12,Ouemba Tassé A. J.2,Tenkam H. M.3,Lubuma J.2

Affiliation:

1. Department of Science, Mathematics and Applied Mathematics, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa

2. Department of Mathematics and Computer Science, University of Dschang, P. O. Box 67, Dschang, Cameroon

3. Department of Mathematics and Applied Mathematics, North-West University, Private Bag X1290, Potchefstroom 2520, South Africa

Abstract

More than 20 outbreaks of Ebola virus disease have occurred in Africa since 1976, and yet no adequate treatment is available. Hence, prevention, control measures and supportive treatment remain the only means to avoid the disease. Among these measures, contact tracing occupies a prominent place. In this paper, we propose a simple mathematical model that incorporates imperfect contact tracing, quarantine and hospitalization (or isolation). The control reproduction number [Formula: see text] of each sub-model and for the full model are computed. Theoretically, we prove that when [Formula: see text] is less than one, the corresponding model has a unique globally asymptotically stable disease-free equilibrium. Conversely, when [Formula: see text] is greater than one, the disease-free equilibrium becomes unstable and a unique globally asymptotically stable endemic equilibrium arises. Furthermore, we numerically support the analytical results and assess the efficiency of different control strategies. Our main observation is that, to eradicate EVD, the combination of high contact tracing (up to 90%) and effective isolation is better than all other control measures, namely: (1) perfect contact tracing, (2) effective isolation or full hospitalization, (3) combination of medium contact tracing and medium isolation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3