Population-based incremental learning for the prediction of Homo sapiens’ protein secondary structure

Author:

Chen Ye1,Yuan Xiaoping1,Cang Xiaohui2

Affiliation:

1. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, P. R. China

2. Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P. R. China

Abstract

Protein structure prediction is the prediction of the 3D structure of a protein based on its amino acid sequence. It is a key component in disciplines such as medicine, biology, and biochemistry. The prediction of the protein secondary structure of Homo sapiens is one of the more important domains. Many methods have been used to feed forward neural networks or SVMs combined with a sliding window. This method’s mechanisms are too complex to be able to extract clear and straightforward physical meanings from it. This paper explores population-based incremental learning (PBIL), which is a method that combines the mechanisms of a generational genetic algorithm with simple competitive learning. The result shows that its accuracies are particularly associated with the Homo species. This new perspective reveals a number of different possibilities for the purposes of performance improvements.

Funder

National Natural Science Foundation of China

National Key Technology Support Program of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3