Affiliation:
1. Department of Mathematics, University of Sarajevo, Zmaja od Bosne 33-35, 71000, Bosnia and Herzegovina
Abstract
Using the Kolmogorov–Arnold–Mozer (KAM) theory, we investigate the stability of May’s host–parasitoid model’s solutions with proportional stocking upon the parasitoid population. We show the existence of the extinction, boundary, and interior equilibrium points. When the host population’s intrinsic growth rate and the releasement coefficient are less than one, both populations are extinct. There are an infinite number of boundary equilibrium points, which are nonhyperbolic and stable. Under certain conditions, there appear 1:1 nonisolated resonance fixed points for which we thoroughly described dynamics. Regarding the interior equilibrium point, we use the KAM theory to prove its stability. We give a biological meaning of obtained results. Using the software package Mathematica, we produce numerical simulations to support our findings.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献