Dynamics of gene regulatory networks with stochastic propensities

Author:

Akman O.1ORCID,Comar T.2,Harris A. L.3,Hrozencik D.4,Li Y.1

Affiliation:

1. Department of Mathematics, Illinois State University, Normal, IL, USA

2. Department of Mathematics, Benedictine University, Lisle, IL, USA

3. Department of Physics, Illinois State University, Normal, IL, USA

4. Department of Mathematics, Chicago State University, Chicago, IL, USA

Abstract

Gene regulatory networks (GRNs) control the production of proteins in cells. It is well-known that this process is not deterministic. Numerous studies employed a non-deterministic transition structure to model these networks. However, it is not realistic to expect state-to-state transition probabilities to remain constant throughout an organism’s lifetime. In this work, we focus on modeling GRN state transition (edge) variability using an ever-changing set of propensities. We suspect that the source of this variation is due to internal noise at the molecular level and can be modeled by introducing additional stochasticity into GRN models. We employ a beta distribution, whose parameters are estimated to capture the pattern inherent in edge behavior with minimum error. Additionally, we develop a method for obtaining propensities from a pre-determined network.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3