Hopf bifurcation in a delay-diffusion housefly equation with Dirichlet boundary conditions

Author:

Chang Xiaoyuan1ORCID,Feng Yixuan1,Li Meng1,Zhang Jimin2ORCID

Affiliation:

1. Department of Mathematics, Harbin University of Science and Technology, Harbin, 150080, P. R. China

2. School of Mathematical Sciences, Heilongjiang University, Harbin, Heilongjiang 150080, P. R. China

Abstract

The dynamical behaviors for a delay-diffusion housefly equation with two kinds of Dirichlet boundary conditions are considered in this paper. The existence and uniqueness of the steady state solutions are investigated, and the stability of the constant steady state solutions is obtained by using qualitative theory. The existence of Hopf bifurcation near the positive constant steady state solution is discussed and the expressions which can identify the bifurcation properties, including the stability of the bifurcating periodic solution and the bifurcation direction, are presented.

Funder

Heilongjiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3