Dynamical analysis and chaos control of a fractional-order Leslie-type predator–prey model with Caputo derivative

Author:

Işık Seval1,Kangalgil Figen2

Affiliation:

1. Department of Mathematics and Science Education, Faculty of Education, Sivas Cumhuriyet University, 58140 Sivas, Turkey

2. Bergama Vocational School, Dokuz Eylul University, 35700 Izmir, Turkey

Abstract

In this paper, the dynamical behaviors of a discrete-time fractional-order population model are considered. The stability analysis and the topological classification of the model at the fixed point have been investigated. It is shown that the model undergoes flip and Neimark–Sacker bifurcations around the co-existence fixed point by using the bifurcation and the normal form theory. These bifurcations lead to chaos when the parameter changes at critical point. In order to control chaotic behavior in the model result from Neimark–Sacker bifurcation, the OGY feedback method has been used. Furthermore, some numerical simulations, including bifurcation diagrams, phase portraits and maximum Lyapunov exponents of the presented model are plotted to support the correctness of the analytical results. The positive Lyapunov exponents demonstrate that chaotic behavior exists in the considered model.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3