On the Simpson index for the Wright–Fisher process with random selection and immigration

Author:

Guillin Arnaud1,Jabot Franck2,Personne Arnaud1

Affiliation:

1. Laboratoire de Mathématiques Blaise Pascal, CNRS UMR 6620, Université Clermont-Auvergne, avenue des Landais, F-63177 Aubière, France

2. Laboratoire d’Ingéniérie pour les Systèmes Complexes, IRSTEA, Campus des Cézeaux 9, avenue Blaise Pascal - CS 20085 63178 Aubière, France

Abstract

Moran or Wright–Fisher processes are probably the most well known models to study the evolution of a population under environmental various effects. Our object of study will be the Simpson index which measures the level of diversity of the population, one of the key parameters for ecologists who study for example, forest dynamics. Following ecological motivations, we will consider, here, the case, where there are various species with fitness and immigration parameters being random processes (and thus time evolving). The Simpson index is difficult to evaluate when the population is large, except in the neutral (no selection) case, because it has no closed formula. Our approach relies on the large population limit in the “weak” selection case, and thus to give a procedure which enables us to approximate, with controlled rate, the expectation of the Simpson index at fixed time. We will also study the long time behavior (invariant measure and convergence speed towards equilibrium) of the Wright–Fisher process in a simplified setting, allowing us to get a full picture for the approximation of the expectation of the Simpson index.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3