Affiliation:
1. ABV-Indian Institute of Information Technology and Management, Gwalior, Madhya Pradesh, India
Abstract
This work investigates the bifurcation analysis in a discrete-time Leslie–Gower predator–prey model with constant yield predator harvesting. The stability analysis for the fixed points of the discretized model is shown briefly. In this study, the model undergoes codimension-1 bifurcation such as fold bifurcation (limit point), flip bifurcation (period-doubling) and Neimark–Sacker bifurcation at a positive fixed point. Further, the model exhibits codimension-2 bifurcations, including Bogdanov–Takens bifurcation and generalized flip bifurcation at the fixed point. For each bifurcation, by using the critical normal form coefficient method, various critical states are calculated. To validate our analytical findings, the bifurcation curves of fixed points are drawn by using MATCONTM. The system exhibits interesting rich dynamics including limit cycles and chaos. Moreover, it has been shown that the predator harvesting may control the chaos in the system.
Funder
science and engineering research board
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modeling and Simulation
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献