Role of antibiotic therapy in bacterial disease: A mathematical study

Author:

Roy Priti Kumar1,Zhang Yanhui2,Ghosh Priyanka1,Pal Joydeep1,Basir Fahad Al3

Affiliation:

1. Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India

2. Beijing Technology and Business University, Beijing 100048, P. R. China

3. Department of Zoology, Visva-Bharati University, Shantiniketan, West Bengal 731235, India

Abstract

Pathogenic bacteria in human system mature through the bio-synthesis of protective layer known as cell wall. This bacterial cell wall growth occurs in the presence of enzyme released by it. After maturation by the cell wall formation, pathogenic bacteria become harmful for human body as they are responsible for different diseases. Antibiotics or drugs are employed for curing bacterial diseases through the inhibition of this maturation process and it occurs by the binding progression of antibiotics with the released enzyme. But nowadays, drugs or antibiotics like [Formula: see text]-lactum family (Amoxcillin) which are generally used for inhibition of bio-synthesis of cell wall become ineffective due to evolution of antibiotic resistance by the bacteria. Antibiotic resistance occurs when an antibiotic has lost its ability to effectively control or kill bacterial growth. As a result, the bacteria becomes “resistant” and continue to multiply for the generation of robust pathogenic bacteria in spite of drug administration. This is due to the release of another type of enzyme by the resistant bacteria which binds with the active antibiotic or drug making it ineffective. Hence, another type of drug (Clauvanic acid) is combined to resist the activity of drug hydrolyzing enzyme so that the initial drug can act effectively. Hence a combination of drug therapy is applied to cure the bacterial diseases successfully. We developed a mathematical model based on the bacterial enzyme and bacterial cell wall proliferation mechanism and showed how we can reduce the bacterial infection in the resistant cases with application of combination drugs (Amoxcillin and Clauvanic acid) to restore normal health. Based on the enzymatic activity and individual drug dynamics we studied the overall system under the single drug and combinational drug administration through our formulated model analysis. We also demonstrated the different dosing time interval and dosing concentration to evaluate the optimized drug administration for arresting the cell wall formation completely. Sensitivity of the different kinetic rate constant also has been performed with subject to drug hydrolyzing enzyme. Our analytical and numerical studies also confirm the efficiency of the combinational drug treatment compared to single drug treatment being more effective in drug resistant cases providing recovery from bacterial disease.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3