Affiliation:
1. LPAIS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
Abstract
This paper reports novel theoretical and analytical results for a perturbed version of a SIR model with Gamma-distributed delay. Notably, our epidemic model is represented by Itô–Lévy stochastic differential equations in order to simulate sudden and unexpected external phenomena. By using some new and ameliorated mathematical approaches, we study the long-run characteristics of the perturbed delayed model. Within this scope, we give sufficient conditions for two interesting asymptotic properties: extinction and persistence of the epidemic. One of the most interesting results is that the dynamics of the stochastic model are closely related to the intensities of white noises and Lévy jumps, which can give us a good insight into the evolution of the epidemic in some unexpected situations. Our work complements the results of some previous investigations and provides a new approach to predict and analyze the dynamic behavior of epidemics with distributed delay. For illustrative purposes, numerical examples are presented for checking the theoretical study.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modelling and Simulation
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献