Impact of solitons on the progression of initial lesion in aortic dissection

Author:

Jadaun Vishakha1ORCID,Singh Nitin Raja1,Singh Shveta1,Shankar Ravi1

Affiliation:

1. Department of Management Studies, Indian Institute of Technology Delhi, IV Floor, Vishwakarma Bhavan, Saheed Jeet Singh Marg, Hauz Khas, New Delhi 110016, India

Abstract

Aortic dissection (AD) is the most common catastrophic disease reported at cardiovascular emergency in hospitals. Herein, a tear in the tunica intima results into separation of layers of aortic wall leading to rupture and torrential bleed. Hypoxia and oxidative stress are associated with AD. The release of hypoxia inducible factor (HIF)-1[Formula: see text] from the initial flap lesion in the tunica intima is the basis for aneurysmal prone factors. We framed a boundary value problem (BVP) to evaluate homeostatic saturation for oxygen dynamics using steady-state analysis. We prove uniqueness and existence of the solution of the BVP for gas exchange at capillary–tissue interface as a normal physiological function. Failure of homeostatic mechanism establishes hypoxia, a new quasi-steady-state in AD. We model permeation of two-layer fluid comprised of blood and HIF-1[Formula: see text] through tunica media as a generalized [Formula: see text]-dimensional nonlinear evolution equation and solve it using Lie group of transformations method. We note that the two-layer fluid permeates the tunica media as solitary wave including solitons such as bright soliton, dark soliton, peregrine soliton, topological soliton, kink soliton, breather soliton and multi-soliton complex. Also, we introduce the main result and discuss the implications of soliton solution, using graphic interpretation, to describe the early stage of progression of AD.

Funder

Indian Institute of Technology Delhi

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3