Affiliation:
1. School of Information and Cyber Security, People’s Public Security University of China, Beijing 100038, P. R. China
Abstract
A new microbial insecticide mathematical model with density dependent for pest is proposed in this paper. First, the system without impulsive state feedback control is considered. The existence and stability of equilibria are investigated and the properties of equilibria under different conditions are verified by using numerical simulation. Since the system without pulse has two positive equilibria under some additional assumptions, the system is not globally asymptotically stable. Based on the stability analysis of equilibria, limit cycle, outer boundary line and Sotomayor’s theorem, the existence of saddle-node bifurcation and global dynamics of the system are obtained. Second, we consider homoclinic bifurcation of the system with impulsive state feedback control. The existence of order-1 homoclinic orbit of the system is studied. When the impulsive function is slightly disturbed, the homoclinic orbit breaks and bifurcates order-1 periodic solution. The existence and stability of order-1 periodic solution are obtained by means of theory of semi-continuous dynamic system.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献