Modeling the impacts of awareness and limited medical resources on the epidemic size of a multi-group SIR epidemic model

Author:

Bajiya Vijay Pal1,Tripathi Jai Prakash1ORCID,Kakkar Vipul1,Kang Yun2

Affiliation:

1. Department of Mathematics, Central University of Rajasthan, Kishangarh 305817, Ajmer, Rajasthan, India

2. College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA

Abstract

The pharmaceutical interventions of emerging infectious diseases are constrained by the available medical resources such as drugs, vaccines, hospital beds, isolation places and the efficiency of the treatment. The awareness of the population also plays an important role in reducing contacts and consequently, reducing the disease transmission rate. In this paper, we propose a multi-group Susceptible, Infected and Recovered (SIR) epidemic model incorporating the awareness of population and the saturated treatment function that describes the effects of the availability of medical resources for treatment. We assume that the treatment of the infected individuals of a group is affected by the medical resources for the treatment of each group. We calculate the basic reproduction number [Formula: see text] in the term of the awareness parameter using the next generation approach. We determine the local and global stabilities of equilibrium (disease free equilibrium and endemic equilibrium) in terms of [Formula: see text] and the availability of medical resources for treatment. We obtain that backward bifurcation occurs at [Formula: see text] along with the existence of multiple endemic equilibria when [Formula: see text] Further, we consider the special case with a single group epidemic system and ensure the existence of multiple endemic equilibria. We showed a necessary condition on the parameter related to the availability of medical resources when backward bifurcation occurs. This situation indicates that reducing the basic reproduction number below unity is not sufficient to remove the disease when the medical resources for treatment are scarce. We used numerical simulations to support and counterpart our theoretical results and discussed the impacts of the awareness of susceptible population and availability of medical resources for treatment in each group, on the epidemic size of each group. Our findings suggest that in the case of limited medical resources, the high treatment rate and awareness of the population are very helpful to control the disease (to reduce the prevalence of infection) and the eradication of disease also depends on initial population sizes. More importantly, it is also obtained that sufficient medical resources for every group are required to eradicate the disease from an entire population.

Funder

Council of Scientific and Industrial Research, India

Science and Engineering Research Board

University Grants Commission

National Science Foundation

The James S. McDonnell Foundation 21st Century Science Initiative in Studying Complex Systems Scholar Award

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3