Mathematical analysis of an HIV infection model including quiescent cells and periodic antiviral therapy

Author:

Kouche Mahiéddine1,Boulfoul Bilal2,Ainseba Bedr’Eddine3

Affiliation:

1. Département de Mathématiques, Université Badji-Mokhtar-Annaba, BP 12, Annaba 23000, Algeria

2. Faculté de Technologie, Université du 20 Aout 1955-Skikda, Route d’El-hadaiek, B.P. 26 Skikda, Algeria

3. Institut de Mathématiques de Bordeaux, UMR CNRS 52 51, Case 36, Université Victor Segalen Bordeaux 2, 3 Ter Place de la Victoire, F33076 Bordeaux Cedex, France

Abstract

In this paper, we revisit the model by Guedj et al. [J. Guedj, R. Thibaut and D. Commenges, Maximum likelihood estimation in dynamical models of HIV, Biometrics 63 (2007) 198–206; J. Guedj, R. Thibaut and D. Commenges, Practical identifiability of HIV dynamics models, Bull. Math. Biol. 69 (2007) 2493–2513] which describes the effect of treatment with reverse transcriptase (RT) inhibitors and incorporates the class of quiescent cells. We prove that there is a threshold value [Formula: see text] of drug efficiency [Formula: see text] such that if [Formula: see text], the basic reproduction number [Formula: see text] and the infection is cleared and if [Formula: see text], the infectious equilibrium is globally asymptotically stable. When the drug efficiency function [Formula: see text] is periodic and of the bang–bang type we establish a threshold, in terms of spectral radius of some matrix, between the clearance and the persistence of the disease. As stated in related works [L. Rong, Z. Feng and A. Perelson, Emergence of HIV-1 drug resistance during antiretroviral treatment, Bull. Math. Biol. 69 (2007) 2027–2060; P. De Leenheer, Within-host virus models with periodic antiviral therapy, Bull. Math. Biol. 71 (2009) 189–210.], we prove that the increase of the drug efficiency or the active duration of drug must clear the infection more quickly. We illustrate our results by some numerical simulations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3