SIR model with time-varying contact rate

Author:

Al-Salti Nasser1,Al-Musalhi Fatma1,ELmojtaba Ibrahim1ORCID,Gandhi Vilmurugan2

Affiliation:

1. Department of Mathematics, Sultan Qaboos University, Po Box 36, 123 Al Khoud, Muscat, Oman

2. Department of Mathematics, Kunsan National University, Kunsan, South Korea

Abstract

The contact rate is defined as the average number of contacts adequate for disease transmission by an individual per unit time and it is usually assumed to be constant in time. However, in reality, the contact rate is not always constant throughout the year due to different factors such as population behavior, environmental factors and many others. In the case of serious diseases with a high level of infection, the population tends to reduce their contacts in the hope of reducing the risk of infection. Therefore, it is more realistic to consider it to be a function of time. In particular, the study of models with contact rates decreasing in time is well worth exploring. In this paper, an SIR model with a time-varying contact rate is considered. A new form of a contact rate that decreases in time from its initial value till it reaches a certain level and then remains constant is proposed. The proposed form includes two important parameters, which represent how far and how fast the contact rate is reduced. These two parameters are found to play important roles in disease dynamics. The existence and local stability of the equilibria of the model are analyzed. Results on the global stability of disease-free equilibrium and transcritical bifurcation are proved. Numerical simulations are presented to illustrate the theoretical results and to demonstrate the effect of the model parameters related to the behavior of the contact rate on the model dynamics. Finally, comparisons between the constant, variable contact rate and variable contact rate with delay in response cases are presented.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3