Affiliation:
1. School of Information Technology, Deakin University, 221 Burwood Hwy, Burwood 3125, Australia
Abstract
The need for monotone approximation of scattered data often arises in many problems of regression, when the monotonicity is semantically important. One such domain is fuzzy set theory, where membership functions and aggregation operators are order preserving. Least squares polynomial splines provide great flexbility when modeling non-linear functions, but may fail to be monotone. Linear restrictions on spline coefficients provide necessary and sufficient conditions for spline monotonicity. The basis for splines is selected in such a way that these restrictions take an especially simple form. The resulting non-negative least squares problem can be solved by a variety of standard proven techniques. Additional interpolation requirements can also be imposed in the same framework. The method is applied to fuzzy systems, where membership functions and aggregation operators are constructed from empirical data.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Information Systems,Control and Systems Engineering,Software
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献