An Efficient Feature Selection and Classification Using Optimal Radial Basis Function Neural Network
Author:
Affiliation:
1. Department of Information Technology, KLN College of Information Technology, Madurai, India
2. Department of Computer Science and Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Erode District, Tamil Nadu, India
Abstract
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Information Systems,Control and Systems Engineering,Software
Link
https://www.worldscientific.com/doi/pdf/10.1142/S0218488518500320
Reference22 articles.
1. Hybrid Tolerance Rough Set–Firefly based supervised feature selection for MRI brain tumor image classification
2. A two-stage Markov blanket based feature selection algorithm for text classification
3. A unified pipeline for online feature selection and classification
4. A comparison of performance of K-complex classification methods using feature selection
5. Efficient and sparse feature selection for biomedical text classification via the elastic net: Application to ICU risk stratification from nursing notes
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An Enhanced Feature Selection Algorithm Based on Maximum Relevance Minimum Redundancy and Splicing Strategy1;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25
2. A Hybrid Classifier Based on the Generalized Heronian Mean Operator and Fuzzy Robust PCA Algorithms;International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems;2024-03
3. A Robust Multi-Objective Feature Selection Model Based on Local Neighborhood Multi-Verse Optimization;IEEE Access;2021
4. Efficient multi-population outpost fruit fly-driven optimizers: Framework and advances in support vector machines;Expert Systems with Applications;2020-03
5. Underwater terrain-aided navigation method based on improved Gaussian sum particle filtering;International Journal of Advanced Robotic Systems;2019-01-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3