Synchronization Adaptive Fuzzy Gain Scheduling PID Controller for a Class of MIMO Nonlinear Systems

Author:

Ghavidel Hesam Fallah1,Kalat Ali Akbarzadeh2

Affiliation:

1. Department of Control Engineering, Shahrood University of Technology, Shahrood, Iran

2. Faculty of Electrical and Robotic Engineering, Shahrood University of Technology, Shahrood, Iran

Abstract

This paper presents a new Synchronization Adaptive Fuzzy Gain Scheduling PID controller (SAFGS-PIDc) for a class of Multiple-input multiple-output (MIMO) nonlinear systems with uncertainties. To achieve better adaptation properties, weighting factor is adapted to sum together the adaptive fuzzy control scheme and Fuzzy Gain Scheduler PID control (FGS-PIDc) method, such that both controllers can be incorporated at the same time. The FGS adjusts online the parameters of the conventional PID controller, and an Indirect Adaptive Fuzzy control (IAFc) scheme that uses feedback error function as inputs is constructed. In addition, each subsystem of MIMO system is able to adaptively compensate for uncertainties and external disturbance. Also, a robust control term is designed that aims to provide added robustness in the presence of uncertainties. The proposed scheme can overcome the controller singularity problem. While the proposed controller scheme requires the uncertainties to be bounded, it does not require this bound to be known. Thus, this control law can be used for the systems that the system’s models are quite unknown. The proposed method guarantees the stability of the closed-loop system based on Lyapunov theory. Finally, simulation studies demonstrate the usefulness and effectiveness of the proposed technique for controlling nonlinear.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3