Affiliation:
1. Dip. Matematica e Informatica, Viale A. Doria, 6 - 95125 Catania, Italy
2. Dip. Metodi e Modelli Matematici, Via A. Scarpa, 16 - 00161 Roma, Italy
Abstract
We illustrate an approach to uncertain knowledge based on lower conditional probability bounds. We exploit the coherence principle of de Finetti and a related notion of generalized coherence (g-coherence), which is equivalent to the "avoiding uniform loss" property introduced by Walley for lower and upper probabilities. Based on the additive structure of random gains, we define suitable notions of non relevant gains and of basic sets of variables. Exploiting them, the linear systems in our algorithms can work with reduced sets of variables and/or constraints. In this paper, we illustrate the notions of non relevant gain and of basic set by examining several cases of imprecise assessments defined on families with three conditional events. We adopt a geometrical approach, obtaining some necessary and sufficient conditions for g-coherence. We also propose two algorithms which provide new strategies for reducing the number of constraints and for deciding g-coherence. In this way, we try to overcome the computational difficulties which arise when linear systems become intractable. Finally, we illustrate our methods by giving some examples.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Information Systems,Control and Systems Engineering,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献