An Outsourced Decryption ABE Model using ECC in Internet of Things

Author:

Kumar Dilip1,Kumar Manoj1,Gupta Gaurav2ORCID

Affiliation:

1. Department of Computer Science, Babasaheb Bhimrao Ambedkar University, Lucknow, UP 226025, India

2. School of Mathematical Sciences, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China

Abstract

Internet of Things (IoT) is a modern technology that is applicable almost everywhere nowadays. Everything is connected to the Internet in the modern digital era. IoT is a collection of things that are interconnected to share information. Devices connected to IoT networks have some limitations in performing heavy computational tasks because of the availability of less computational and battery power. Attribute Based Encryption (ABE) is a modern public-key cryptographic technique that provides privacy with access control. The bilinear map is an expensive operation that is used in most of the ABE schemes. Elliptic Curve Cryptography (ECC) is an alternative for bilinear pairing to reduce the computation of encryption and decryption in ABE schemes. The process of encryption and decryption of ABE is a heavy computational task for resource-constrained devices. In this paper, an outsourcing-based decryption of ABE using ECC is proposed to reduce the decryption overhead of devices that have limited computational resources. Our scheme divides the computation of the decryption of ABE into two stages: first, the partial decryption of ciphertext in the cloud server, and second, the final decryption of partially decrypted ciphertext by the data user to retrieve the original message. This scheme is secure against the malicious cloud server by adding a blinding factor into the secret to be shared. The blinding factor is shared with intended users through attribute authority. The experimental results demonstrate that our scheme can reduce the decryption complexity and save the computational time of devices, compared to the existing schemes. Thus the proposed scheme is applicable for lightweight devices used in IoT.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3