Rough Set Theory and Fuzzy Logic Based Warehousing of Heterogeneous Clinical Databases

Author:

Saravana Kumar R.1,Tholkappia Arasu G.2

Affiliation:

1. Department of Computer Science and Engineering, Jayam College of Engineering and Technology, Dharmapuri, Tamilnadu, India

2. AVS Engineering College Salem, Tamilnadu, India

Abstract

Large amounts of data about the patients with their medical conditions are presented in the Medical databases. Analyzing all these databases is one of the difficult tasks in the medical environment. In order to warehouse all these databases and to analyze the patient’s condition, we need an efficient data mining technique. In this paper, an efficient data mining technique for warehousing clinical databases using Rough Set Theory (RST) and Fuzzy Logic is proposed. Our proposed methodology contains two phases – (i) Clustering and (ii) Classification. In the first phase, Rough Set Theory is used for clustering. Clustering is one of the data mining techniques for warehousing the heterogeneous data bases. Clustering technique is used to group data that have similar characteristics in the same cluster and also to group the data that have dissimilar characteristics with other clusters. After clustering the data, similar objects will be clustered in one cluster and the dissimilar objects will be clustered under another cluster. The RST can be reduced the complexity. Then in the second phase, these clusters are classified using Fuzzy Logic. Normally, Classification with Fuzzy Logic is generated more number of rules. Since the RST is utilized in our work, the classification using Fuzzy can be done with less amount of complexity. The proposed approach is evaluated using various clinical related databases from heart disease datasets – Cleveland, Switzerland and Hungarian. The performance analysis is based on Sensitivity, Specificity and Accuracy with different cluster numbers. The experimentation results show that our proposed methodology provides better accuracy result.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3