Information-Based Evaluation of Approximation Methods in Dempster-Shafer Theory

Author:

Sarabi-Jamab Atiye12,Araabi Babak N.12

Affiliation:

1. Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

2. School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Abstract

Complexity of computations, particularly due to large number of focal elements (FEs), in Dempster-Shafer theory (DST) motivates the development of approximation algorithms. Existing approximation methods include efficient algorithm for special hypothesis space, Monte Carlo based techniques, and simplification procedures. In this paper, the quality of the simplification-based approximation algorithms is evaluated using a new information-based comparison methodology. To this end, three structured testbeds are introduced. Each testbed is designed with an eye on a particular form of uncertainty associated with a body of evidence (BoE) in DST, i.e., conflict and non-specificity. Three proposed testbeds along with the classic testbed are utilized to evaluate the accuracy and complexity of existing algorithms. In light of the proposed evaluation methodology, a new approximation method is presented as well. The proposed algorithm has the ability to choose the most informative FEs without being forced to select the FEs with the largest mass function. Comparison of overall qualitative performance of approximation algorithms provides accuracy versus computational time tradeoff to choose an appropriate approximation method in different applications. Moreover, experiments with testbeds indicate that our proposed algorithm enhances the accuracy and computational tractability simultaneously.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3