AN AI APPROACH TO MEASURING FINANCIAL RISK

Author:

YU LINING1,HÄRDLE WOLFGANG KARL2345,BORKE lUKAS1,BENSCHOP THIJS1

Affiliation:

1. Ladislaus von Bortkiewicz Chair of Statistics, C.A.S.E. - Center for Applied Statistics and Econometrics, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

2. C.A.S.E. - Center for Applied Statistics and Econometrics, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

3. Wang Yanan Institute for Studies in Economics, Xiamen University, 422 Siming Road, Xiamen 361005, P. R. China

4. Sim Kee Boon Institute for Financial Economics, Singapore Management University, 90 Stamford Road, Singapore 178903, Singapore

5. Department of Mathematics and Physics, Charles University Prague, Ke Karlovu 2027/3, 12116 Praha 2, Czech

Abstract

AI artificial intelligence brings about new quantitative techniques to assess the state of an economy. Here, we describe a new measure for systemic risk: the Financial Risk Meter (FRM). This measure is based on the penalization parameter ([Formula: see text]) of a linear quantile lasso regression. The FRM is calculated by taking the average of the penalization parameters over the 100 largest US publicly-traded financial institutions. We demonstrate the suitability of this AI-based risk measure by comparing the proposed FRM to other measures for systemic risk, such as VIX, SRISK and Google Trends. We find that mutual Granger causality exists between the FRM and these measures, which indicates the validity of the FRM as a systemic risk measure. The implementation of this project is carried out using parallel computing, the codes are published on www.quantlet.de with keyword [Formula: see text] FRM. The R package RiskAnalytics is another tool with the purpose of integrating and facilitating the research, calculation and analysis methods around the FRM project. The visualization and the up-to-date FRM can be found on hu.berlin/frm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Economics and Econometrics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3