Multi-Timescale Simulations of Temperature Elevation for Ultrasonic Welding of CFRP with Energy Director

Author:

Takamura Maruri1,Uehara Kotaro1,Koyanagi Jun1ORCID,Takeda Shinichi2

Affiliation:

1. Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan

2. Japan Aerospace Exploration Agency, Tokyo, Japan

Abstract

Ultrasonic welding is an energy-efficient technology that enables quick bonding of thermoplastic composite materials under normal temperature and pressure conditions. Here, numerical multi-timescale simulation is proposed to understand the welding principle, using numerical simulations of ultrasonic welding. The simulation results are validated by comparing with temperature measurements in welding tests. In the multi-timescale simulations, microsecond-scale simulations are performed first. The ultrasonic wave is modeled as a vibration load, and the energy dissipation per vibration at 25, 75, 125, 175, 225, and 275C is analyzed. Then, the time derivative of the temperature rise is obtained. In the normal scale simulations, the ultrasonic wave and holding pressure are replaced by a constant load, and the entire process of ultrasonic welding is simulated. The slope of the temperature rise is fitted to the time derivative of the temperature rise obtained from the microsecond-scale simulations, using the material constant as a parameter. Explicit multi-timescale simulations were performed to investigate the relationship between stress concentration and temperature rise due to ED geometry. The result reveals similar temperature behavior to the experimental one, indicating the validity of the multi-timescale method. It suggests that viscoelastic energy dissipation and stress concentration are responsible for the temperature spike.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3