Modeling of Cementitious Representative Volume Element with Various Water–Cement Ratios

Author:

Shahzamanian M. M.12,Basirun W. J.3

Affiliation:

1. Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia

2. Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada

3. Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract

This study uses the finite element method (FEM) to measure the mechanical properties of microstructure-based cementitious representative volume elements (RVEs) with various water–cement ratios (W/Cs) generated by CEMHYD3D. The finite element boundary condition effects that significantly and computationally change the elastic properties are studied and discussed. Various boundary conditions in ABAQUS are applied and compared with the results obtained using the variational asymptotic method for unit cell homogenization (VAMUCH). This comparison is conducted using ANSYS. This study aims to analyze and determine the effect of different boundary conditions in detail on the prediction of the elastic properties of cementitious RVE with various W/Cs and identify the best approach in this regard. Results show that Young’s, shear, and bulk moduli decrease with the increase in W/C and the boundary conditions in ABAQUS influence the outcomes, particularly on bulk modulus and Poisson’s ratio.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3