A Modified Decision-Making Optimization Approach During Machining of Carbon Fabric and Reduced Graphene Oxide Reinforced (CF/rGO) Polymer Nanocomposites

Author:

Kesarwani Shivi1,Verma Rajesh Kumar2ORCID,Jayswal S. C.1

Affiliation:

1. Department of Mechanical Engineering, Madan Mohan Malviya University of Technology, Gorakhpur 273010, India

2. Department of Mechanical Engineering, School of Engineering, Harcourt Butler Technical University, Kanpur 208002, India

Abstract

Manufacturing industries are rapidly growing with varying customer needs, and efficient quality control tools are widely used to optimize product/process performances. This paper highlights the modified quality control module to optimize the milling performances of polymer nanocomposites. The carbon fabric and reduced graphene oxide reinforced (CF/rGO) polymer composites are machined at varying process constraints. The experimentation was designed according to Taguchi’s orthogonal array. The Milling performances were optimized using a multi-criterion decision-making (MCDM) tool based on a combination distance-based assessment (CODAS) optimization method. The desired value of surface roughness (Ra) and cutting force (Fc) is examined during the machining of the developed polymer. CODAS optimization module efficiently combined the various contradictory parametric outcomes into a single objective assessment value (Hi), which could not be possible by utilizing the usual conventional Taguchi method. Specifically, the optimal machining conditions were found to be rGO wt.%—1, speed—2000[Formula: see text]rpm, feed—80[Formula: see text]mm/min, DoC—1.5[Formula: see text]mm. Overall, the findings demonstrate the practicality of the recommended MCDM tool, which outperformed the usual conventional Taguchi method. The optimal assessment score of CODAS was noted as 1.904, which confirms the better viability of the current MCDM approach. This study contributes to the advancement of efficient quality control tools that can be widely used to optimize product/process performances in manufacturing industries.

Funder

Council of Science and Technology, U.P.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3