EFFECT OF A HIGH-FREQUENCY VIBRATION BOUNDARY ON RBC

Author:

YUN ZHONG1,XIANG CHUANG1,WANG LIANG1

Affiliation:

1. School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, P. R. China

Abstract

The vibrations in blood pumps were often caused by high speed, suspension structure, viscoelastic implantation environment and other factors in practical application. Red blood cell (RBC) was modeled using a nonlinear spring network model. The immersed boundary-lattice Boltzmann method (IB-LBM) was used to investigate the impact of high-frequency vibration boundary on RBC. To confirm the RBC model, the simulation results of RBC stretching were compared with experimental results. We examined the force acting on RBC membrane nodes; moreover, we determined whether RBC energy was affected by different frequencies, amplitudes, and vibration models of the boundary. Furthermore, we examined whether RBC energy was affected by the distance between the top and bottom boundaries. The energy of RBCs in shear flow disturbed by the vibration boundary was also investigated. The results indicate that larger amplitude (Am), frequency (Fr), and opposite vibration velocity of top and bottom boundary produced a larger force that acted on RBC membrane nodes and larger energy changes in RBCs. The vibration boundary may cause turbulence and alter RBC energy. When the blood pump was designed and optimized, the vibration frequency and amplitude of the blood pump body and impeller should be reduced, the phase of the blood pump body and impeller vibration velocity should be close. To alleviate the free energy of RBCs and to reduce RBC injury in the blood pump, the distance between RBCs and the boundary should not be less than 20[Formula: see text][Formula: see text]m.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MODELING A RED BLOOD CELL CYTOSKELETON: INSIGHTS AND TIPS;Eurasian Journal of Mathematical and Computer Applications;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3