SIMULATING THE EFFECTS OF ELEVATED INTRAOCULAR PRESSURE ON OCULAR STRUCTURES USING A GLOBAL FINITE ELEMENT MODEL OF THE HUMAN EYE

Author:

DAI PEISHAN1,ZHAO YALI1,SHENG HANWEI1,LI LING1,WU JING1,HAN HAN2ORCID

Affiliation:

1. Department of Biomedical Engineering, School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, P. R. China

2. Department of Electrical and Computer Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore

Abstract

Elevated intraocular pressure (IOP) may be the primary risk factor to the development of glaucoma. Finite element (FE) modeling is commonly considered as an effective method to quantitatively analyze pathogenesis of glaucoma. Recent researches focus on establishing partial human eye models. A refined global human eye model was developed using ANSYS software to investigate the correlation between IOP elevation and biomechanical responses. First, the pressure transferring process according to IOP elevation in the whole eye was analyzed to simulate the effects of IOP elevation on glaucoma. Then, the biomechanical responses of the anterior eye segment under various pressure differences between the anterior and posterior chambers (AC and PC) were analyzed to simulate posterior nonadhesion of iris and posterior synechia. This global eye model not only simulated the responses of elevated IOP on ocular structures, but also revealed the process of pressure transferring among each tissue from the anterior eye segment to the optic nerve head (ONH) region. The local mechanical characteristics of the ocular structures obtained from the global model agreed with previous findings. This global model may shed light on the studies of multifactorial glaucoma.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of China (CN)

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3