DENSE SWIN-UNET: DENSE SWIN TRANSFORMERS FOR SEMANTIC SEGMENTATION OF PNEUMOTHORAX IN CT IMAGES

Author:

TANG ZHIXIAN1ORCID,ZHANG JINYANG2ORCID,BAI CHULIN2ORCID,ZHANG YAN2ORCID,LIANG KAIYI3ORCID,YAO XUFENG1ORCID

Affiliation:

1. College of Medical Imaging, Jiading District Central Hospital Affiliated Shanghai, University of Medicine and Health Sciences, Shanghai 201800, P. R. China

2. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200240, P. R. China

3. Department of Radiology, Jiading District Central Hospital Affiliated Shanghai, University of Medicine and Health Sciences, Shanghai 201800, P. R. China

Abstract

Pneumothorax is a common yet potentially serious lung disease, which makes prompt diagnosis and treatment critical in clinical practice. Deep learning methods have proven effective in detecting pneumothorax lesions in medical images and providing quantitative analysis. However, due to the irregular shapes and uncertain positions of pneumothorax lesions, current segmentation methods must be further improved to increase accuracy. This study aimed to propose a Dense Swin-Unet algorithm that integrated the Dense Swin Transformer Block with the Swin-Unet model. The Dense Swin-Unet algorithm employed a sliding window self-attentiveness mechanism on different scales to enhance multiscale long-range dependencies. We designed an enhanced loss function that accelerated the convergence speed to address the issue of class imbalance. Given the limited availability of data in pneumothorax image processing, we created a new dataset and evaluated the efficacy of our model on this dataset. The results demonstrated that our lesion segmentation algorithm attained a Dice coefficient of 88.8%, representing a 1.5% improvement compared with previous deep learning algorithms. Notably, our algorithm achieved a significant enhancement in segmenting small microlesions.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3