A THREE-DIMENSIONAL COMPUTER MODEL TO SIMULATE SPONGY BONE REMODELING UNDER OVERLOAD USING A SEMI-MECHANISTIC BONE REMODELING THEORY

Author:

ROUHI GHOLAMREZA12,VAHDATI ALI3,LI XIANJIE4,SUDAK LESZEK5

Affiliation:

1. Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

2. Faculty of Health Sciences, School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada

3. Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Belgium

4. Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, Canada

5. Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, Canada

Abstract

Overload has been suggested as a contributing factor for bone loss, for instance at the bone implant interface. The objective of this study is to investigate spongy bone resorption under overload using a semi-mechanistic bone remodeling theory. Since overload can cause the accumulation of microdamage in bone, in this study, it is assumed that overload will increase the osteoclastic activity, and also will reduce the osteocyte influence distance. First, a previously proposed semi-mechanistic bone remodeling theory was extended by defining a new form for the resorption probability function, which is based on experimental evidence. Then, in order to investigate the validity of our hypothesis, a three-dimensional finite element model of spongy bone was developed. The simulation results show that, first, trabeculae adapt with the mechanical stimuli placed on them. Secondly, a sharp reduction in spongy bone density will be resulted, in agreement with experimental evidence, when bone is under overload.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3