SIMULATION OF DIABETIC RETINOPATHY UTILIZING CONVOLUTIONAL NEURAL NETWORKS

Author:

RAJARAJESWARI P.1,MOORTHY JAYASHREE1,BÉG O. ANWAR2

Affiliation:

1. Department of Computer Science and Engineering, Sreenivasa Institute of Technology and Management Studies, Chittoor, Andhra Pradesh, India

2. Professor of Engineering Science & Director Multi Physical Engineering Sciences Group (MPESG), School of Science, Engineering and Environment (SEE), University of Salford, Manchester, M5 4WT, UK

Abstract

Currently, diabetic retinopathy is still screened as a three-stage classification, which is a tedious strategy and along these lines of this paper focuses on developing an improved methodology. In this methodology, we taught a convolutional neural network form on a major dataset, which includes around 45 depictions to do mathematical analysis and characterization. In this paper, DR is constructed, which takes the enter parameters as the HRF fundus photo of the eye. Three classes of patients are considered — healthy patients, diabetic’s retinopathy patients and glaucoma patients. An informed convolutional neural system without a fully connected model will also separate the highlights of the fundus pixel with the help of the enactment abilities like ReLu and softmax and arrangement. The yield obtained from the convolutional neural network (CNN) model and patient data achieves an institutionalized 97% accuracy. Therefore, the resulting methodology is having a great potential benefiting ophthalmic specialists in clinical medicine in terms of diagnosing earlier the symptoms of DR and mitigating its effects.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Bidirectional LSTM approach for written script auto evaluation using keywords-based pattern matching;Natural Language Processing Journal;2023-12

2. Predictive analysis of COVID 19 disease based on mathematical modelling and machine learning techniques;Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization;2022-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3