A RESONANCE FREQUENCY ANALYSIS MODEL OF A CURVED BEAM DIAPHRAGM FOR THE EFFICIENT IMPROVEMENT OF BONE CONDUCTION HEARING AIDS

Author:

PARK JAE SUNG1,NA SUNG DAE23,SEONG KI WOONG23,LEE JUNG HYUN3,WOO SEONG TAK4,KIM MYOUNG NAM2

Affiliation:

1. Department of Medical & Biological Engineering, Graduate School, Kyungpook National University, Daegu 41944, South Korea

2. Department of Biomedical Engineering, School of Medicine, Kyungpook National University, Daegu, South Korea

3. Department of Biomedical Engineering Center, Kyungpook National University Chilgok Hospital, Daegu 41944, South Korea

4. Gyeongbuk Institute of IT Convergence Industry Technology, Gyeongsan-si 38463, Korea

Abstract

Recently, the elderly population and excessive use of multimedia devices are increasing, which contribute to the growing number of patients with hearing loss. Hearing aids are used as a hearing rehabilitation method for patients with hearing loss and can be classified as air conduction and bone conduction according to the sound transmission pathway. Bone conduction is advantageous over sound transmission as it does not affect the eardrum. Bone conduction systems are divided into BAHA, Bone Bridge and B81 according to the vibration transmission method. BAHA has disadvantages as it can result in skin diseases and has inconveniences, and patients are reluctant to accept Bone Bridge because it has to be implanted into the temporal bone. Due to its location on the skin, B81 can solve these problems; however, this method may reduce transmission efficiency. In this paper, we have proposed a resonance frequency analysis model of a curved beam diaphragm to solve these problems. The proposed method involved a natural frequency equation with derived parameters. An improved efficiency (vibration transmission) was confirmed using the fabricated diaphragm. In the future, the proposed method may be used in various fields.

Funder

Korean government

Ministry of Health & Welfare, Republic of Korea

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3