ALCOHOLIC INDEX USING NON-LINEAR FEATURES EXTRACTED FROM DIFFERENT FREQUENCY BANDS

Author:

MURALIDHAR BAIRY G.1,NIRANJAN U. C.2,OH SHU LIH3,KOH JOEL E. W.3,SUDARSHAN VIDYA K.45,TAN JEN HONG3,HAGIWARA YUKI3,NG EDDIE Y. K.6

Affiliation:

1. Department of Biomedical Engineering, Manipal Institute of Technology, Manipal

2. Department of Biomedical Engineering & Electronics and Communication, Adjunct Faculty, Manipal Institute of Technology, Manipal

3. Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore

4. Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore

5. School of Electrical and Computer Engineering, University of Newcastle, Singapore

6. School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore

Abstract

Alcoholism is a complex condition that mainly disturbs the neuronal networks in Central Nervous System (CNS). This disorder not only disturbs the brain, but also affects the behavior, emotions, and cognitive judgements. Electroencephalography (EEG) is a valuable tool to examine the neuropsychiatric disorders like alcoholism. The EEG is a well-established modality to diagnose the electrical activity produced by the populations of neurons in cerebral cortex. However, EEG signals are non-linear in nature; hence very challenging to interpret the valuable information from them using linear methods. Thus, using non-linear methods to analyze EEG signals can be beneficial in order to predict the brain signals condition. This paper presents a computer-aided diagnostic method for the detection of alcoholic EEG signals from normal by employing the non-linear techniques. First, the EEG signals are subjected to six levels of Wavelet Packet Decomposition (WPD) to obtain seven wavebands (delta ([Formula: see text]), theta ([Formula: see text]), lower alpha (la), upper alpha (ua), lower beta (lb), upper beta (ub), lower gamma (lg)). From each wavebands (activity bands), 19 non-linear features such as Recurrence Quantification Analysis (RQA) ([Formula: see text]), Approximate Entropy ([Formula: see text]), Energy ([Formula: see text]), Fractal Dimension (FD) ([Formula: see text]), Permutation Entropy ([Formula: see text]), Detrended Fluctuation Analysis ([Formula: see text]), Hurst Exponent ([Formula: see text]), Largest Lyapunov Exponent ([Formula: see text]), Sample Entropy ([Formula: see text]), Shannon’s Entropy ([Formula: see text]), Renyi’s entropy ([Formula: see text]), Tsalli’s entropy ([Formula: see text]), Fuzzy entropy ([Formula: see text]), Wavelet entropy ([Formula: see text]), Kolmogorov–Sinai entropy ([Formula: see text]), Modified Multiscale Entropy ([Formula: see text]), Hjorth’s parameters (activity ([Formula: see text]), mobility ([Formula: see text]), and complexity ([Formula: see text])) are extracted. The extracted features are then ranked using Bhattacharyya, Entropy, Fuzzy entropy-based Max-Relevancy and Min-Redundancy (mRMR), Receiver Operating Characteristic (ROC), [Formula: see text]-test, and Wilcoxon. These ranked features are given to train Support Vector Machine (SVM) classifier. The SVM classifier with radial basis function (RBF) achieved 95.41% accuracy, 93.33% sensitivity and 97.50% specificity using four non-linear features ranked by Wilcoxon method. In addition, an integrated index called Alcoholic Index (ALCOHOLI) is developed using highly ranked two features for identification of normal and alcoholic EEG signals using a single number. This system is rapid, efficient, and inexpensive and can be employed as an EEG analysis assisting system by clinicians in the detection of alcoholism. In addition, the proposed system can be used in rehabilitation centers to evaluate person with alcoholism over time and observe the outcome of treatment provided for reducing or reversing the impact of the condition on the brain.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3