MULTIFUNCTIONAL TITANIUM: SURFACE MODIFICATION PROCESS AND BIOLOGICAL RESPONSE

Author:

SPRIANO S.1,FERRARIS S.12,PAN G.13,CASSINELLI C.4,VERNÈ E.1

Affiliation:

1. Politecnico di Torino, Department of Applied Science and Technology — DISAT, Institute of Materials Physics and Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

2. Bionica Tech s.r.l., Corso Sommelier 32, 10129 Torino, Italy

3. Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China

4. NobilBio Ricerche, Via Valcastellana 26, 14037 Portacomaro (AT), Italy

Abstract

A proper stimulation of the cell activity is the last request to the new biomaterials, intended for bone substitution and osseointegration. In this regard, the scientific literature suggests that the surface modification on a nanoscale is a major source of innovation. The nano features and multiscale topographies can stimulate cell differentiation and activity. Moreover, the presence of specific biological molecules grafted onto the biosurfaces can properly stimulate cells to tissue regeneration. The final aim is to promote a fast and physiological bone healing, at the implant site. In order to be suitable for implantation, the modified surfaces must sustain the implantation and working load/friction without damages. Two different innovative surface modifications of the Ti6Al4V alloy were tested in this research. The first one is an inorganic modification and it is aimed at inducing in vivo apatite precipitation (inorganic bioactivity) and cell interaction through nano features. The modified surface shows a complex topography (micro and nanoroughness), a modified surface chemistry (high density of hydroxyls groups), high wettability and protein absorption. Moreover, an additional biological modification by grafting of alkaline phosphatase (ALP) was tested. The modified surfaces were compared with the traditional polished and blasted ones, in terms of osteoblast adhesion, proliferation and morphology. A significant increase in the cell proliferation rate was observed on the modified materials. Moreover, the osteoblasts showed a more differentiated aspect and filopodia exploring the nanotextures on both the treated materials.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3