EXTRACTION OF PRESSURE AND TEMPERATURE DISTRIBUTION OF HIGH INTENSITY FOCUSED ULTRASOUND CONSIDERING NONLINEAR PROPAGATION

Author:

MORTAZAVI SARE1,MOKHTARI-DIZAJI MANIJHE1ORCID

Affiliation:

1. Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Abstract

The aim of this study is the extraction of acoustic pressure distribution in the target tissue layers based on the nonlinear behavior of waves. The nonlinear behavior effect of high intensity focused ultrasound (HIFU) on the temperature distribution of the tissue was extracted and compared with the linear behavior. The acoustic pressure field was calculated using the Westervelt equation and was coupled with Pennes thermal transfer equation. The simulations were performed for three layers of skin, fat and muscle using Comsol software. The disagreement between two linear and nonlinear models was analyzed with Kolmogorov–Smirnov test. The pressure and temperature distributions were calculated in nonlinear model by changing the acoustical parameters of the transducer including intensity, effective radiation area, focal length and sonication time. Model results were validated with experimental results with 98% correlation coefficient ([Formula: see text]). There is no significant difference between the pressure amplitude and temperature distribution in linear and nonlinear models at low intensity ([Formula: see text]), but with increasing intensity to 10[Formula: see text]W/cm2, in nonlinear model, maximum pressure and maximum temperature increased 40% and 20% compared with linear model. For input intensities of 1.5, 2, 8 and 10[Formula: see text]W/cm2, the maximum pressure (at focal point) increased 10%, 12%, 22%, 40% and maximum temperature increased 1%, 2%, 12%, 20% in nonlinear model compared to linear model. At 0.8[Formula: see text]cm2 and 1.5[Formula: see text]cm2 effective radiation area, the maximum acoustic pressure and temperature in nonlinear model increased from 12[Formula: see text]MPa to 30[Formula: see text]MPa and 43C to 79C, respectively. By decreasing the focal lengths from 10[Formula: see text]mm to 7.5[Formula: see text]mm, the maximum temperature increased from 45C to 87C. It is concluded a change in the input parameters of the transducer; it can be very effective in treating. The results emphasize the effects of nonlinear propagation and acoustical radiation parameters to improve the HIFU treatment.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3