TRANSITION MOTION PATTERN CLASSIFICATION FOR LOWER LIMB EXOSKELETON IN STAIR SCENES BASED ON CNN AND GRU

Author:

YU FANGLI12ORCID,ZHENG JIANBIN1,YU LIE3,XIAO HUI2,CHEN QIANG2,ZHANG DI2

Affiliation:

1. School of Information Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, P. R. China

2. People’s Liberation Army Air Force Early Warning Academy, 288 Huangpu Road, Wuhan, Hubei, P. R. China

3. School of Electrical and Electronic Engineering, Wuhan Textile University, Wuhan, Hubei, P. R. China

Abstract

Motion pattern classification is one of the important research fields in lower extremity exoskeleton robot, it refers to acquiring motion data from multiple sensors installed on the exoskeleton. We designed a wearable lower limb exoskeleton robot with multiple sensors mainly including force sensitive resistors (FSRs) inside smart shoes and encoders inside joints. The wearable robot was used to help people carry the heavy load in the scenes of ascending stairs and descending stairs. The experiments of stair walking were carried out by the subjects who wore the exoskeleton to ascend stairs and descend stairs for a designated time. Before or after the stair walking, the subject would turn to move on flat ground with the result that there existed four transition motions between the stair and flat ground walking. As known, there is less research focusing on the classification of transition motions. The aim of this paper is to classify these motion patterns through a learning algorithm. The convolutional neural network (CNN) and gated recurrent unit (GRU) framework were combined to improve the classification accuracy. Specifically, CNN was used to extract the features of the motion pattern, while GRU was used to extract the temporal correlation during walking. Experimental works showed that the proposed CNN-GRU possessed a significantly high prediction accuracy in motion pattern classification. Compared with CNN, GRU and LSTM-CNN models whose accuracy score does not exceed 93.22%, the proposed CNN-GRU gained a high accuracy of 95.51%.

Funder

The study on Load-bearing and Moving Support Exoskeleton Robot Key Technology and Typical Application

Research on motion pattern recognition of exoskeleton robot based on curve similarity model

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3