A COMPUTATIONAL STRATEGY TO EXAMINE THE PROFILE EFFECTS OF MICROPRISM REGIONS ON THE OVERALL ANISOTROPY OF HUMAN ENAMELS

Author:

DENG QIANG1,ZONG ZHIFANG1,NING ZHENWU1,ZHENG JING1,LIU JIANTAO12,ZHOU ZHONGRONG1

Affiliation:

1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. China

2. Laboratoire de Mécanique d’Evry, Université d’Evry, 40 rue du Pelvoux, Évry 91020, France

Abstract

In this study, our attention is mainly on elaborating a computational strategy to effectively predict the influence of prism profiles on the overall anisotropic property of human enamels (HEs). At first, two distinct schemes are developed separately with the aid of the polynomial fitting technique and the general power functions to mathematically describe the practical irregular and simplified regular profiles of enamel prisms. Hereafter, two parametric piecewise formulas, which facilitate the definition of anisotropic material properties of finite elements at different locations and make the numerical simulation of HE microstructures consisting of irregularly shaped prisms feasible, are presented to describe the orientation of hydroxyapatite (HAP) crystallites embedded in microprisms. The effective anisotropic moduli over a representative unit cell (RUC) under the periodic displacement constraint is concisely introduced according to the micromechanics, and a computational strategy is established to calculate these moduli numerically. Finally, the evaluations in the open literature are employed to demonstrate the validity of the elaborated computational strategy, and more investigations are conducted and yield the conclusions such that the material property of the inter-prism regions as well as the prism shapes plays a crucial role in determining the overall anisotropy of HEs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3