ENTROPY PARAMETER OF CARDIAC DEGREE SEVERITY ANALYSIS

Author:

IMANE DEBBAL1ORCID,LOTFI HAMZA CHERIF1,HOUDA BAAKEK YETTOU NOUR EL1

Affiliation:

1. Genie Biomedical Laboratory (GBM), Genie Biomedical Department, Faculty of Technology, University Abou Bakr Belkaid Tlemcen, Algeria

Abstract

The phonocardiogram (PCG) signal is sometimes affected by added parameters that reflect the presence of a specific pathology. The intensity or the energy of the signal is one of the most reliable parameters when studying cardiac severity. Yet, in a pathological electrophysiological and audio signal, the severity information does not fully remain in the intensity or energy, but in other variables. In this paper, we will discuss the ability of a time-frequency parameter to discriminate, separate, and monitor the pathological cardiac severity levels. We studied 14 PCG signal from eight pathologies, six of them contain clicks (reduce murmurs), and eight murmur PCG signals with four different cardiac severity levels. We then calculated the entropy of approximation coefficients (EAC) from a discrete wavelet transform (DWT) analysis, to differentiate the PCG signals with clicks from those with murmurs and to assess the cardiac severity evolution. Since the entropy EAC is also related to the signal’s intensity (energy), we compared it to the energetic ratio (ER) evolution, a parameter widely used for PCG signals discrimination and classification, which revealed that the EAC provied better results for the paper' purposes.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3