ANALYSIS OF EARDRUM PATHOLOGIES USING THE FINITE ELEMENT METHOD

Author:

GENTIL FERNANDA12,GARBE CAROLINA1,PARENTE MARCO1,MARTINS PEDRO1,FERREIRA ANTÓNIO1,JORGE RENATO NATAL1,SANTOS CARLA1,PAÇO JOÃO3

Affiliation:

1. IDMEC, Faculdade de Engenharia da Universidade do Porto, Portugal

2. Clínica ORL-Dr. Eurico Almeida, Widex, ESTSP, Portugal

3. Hospital CUF, Faculdade de Medicina da Universidade de Lisboa, Portugal

Abstract

This work investigates the effect of eardrum perforations and myringosclerosis in the mechanical behavior of the tympano-ossicular chain. A 3D model for the tympano-ossicular chain was created and different numerical simulations were made, using the finite element method. For the eardrum perforations, three different calibers of perforated eardrums were simulated. For the micro perforation (0.6 mm of diameter) no differences were observed between the perforated and normal eardrum. For the numerical simulation of the eardrum with the largest perforation caliber, small displacements were obtained in the stapes footplate, when compared with the model representative of normal ossicular-chain, at low frequencies, which is related with major hearing loss in this frequency range. For the numerical simulations of myringosclerosis, the larger differences in the displacement field between the normal and modified model were obtained in the umbo. When observing the results in the stapes footplate, there were no significant differences between the two models, which is in accordance to the clinical data. When simulating an eardrum perforation along with myringosclerosis, there is a decrease in the displacements, both from the umbo and the central part of the stapes footplate, often associated with a pronounced hearing loss. It could be concluded that the reduced displacement of the stapes footplate may be related to a greater hearing loss.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3