SUPRAVENTRICULAR TACHYCARDIA CLASSIFICATION USING ATTENTION-BASED RESIDUAL NETWORKS

Author:

ZHANG JIAYU1,QIAN LI1,HOU XINGYU1,ZHU HONGLEI1,WU XIAOMEI2

Affiliation:

1. School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China

2. Department of Electrical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, P. R. China

Abstract

Atrioventricular nodal reentrant tachycardia (AVNRT) and atrioventricular reentrant tachycardia (AVRT) are two common arrhythmias with high similarity. Automatic electrocardiogram (ECG) detection using machine learning and neural networks has replaced manual detection, but few studies distinguishing AVNRT from AVRT have been reported. This study proposed a classification algorithm using bottleneck attention module (BAM)-based deep residual network (ResNet) through two-lead ECG records. Specifically, ResNet possessed sufficient network depth to extract abundant features, and BAM was introduced to optimize weight assignment of feature maps by fusing together channel and spatial information. Seven types of ECG signals from four public databases were used to pretrain the proposed classification model, which was then fine-tuned using the experimental dataset. The AVNRT and AVRT detection precisions were 98.95% and 87.47%, sensitivities were 87.52% and 98.58%, and the [Formula: see text]1-scores were 92.82% and 92.68%, respectively. These findings showed that our proposed classification model achieved excellent inter-patient classification performance and can assist doctors in the diagnosis of AVNRT and AVRT.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3