CLASSIFICATION OF SOFTWARE CONTROL ARCHITECTURES FOR A POWERED PROSTHESIS THROUGH CONVENTIONAL GAIT ANALYSIS USING MACHINE LEARNING APPLICATIONS

Author:

LEMOYNE ROBERT1ORCID,MASTROIANNI TIMOTHY2

Affiliation:

1. Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5640, USA

2. Pittsburgh, PA 15243, USA

Abstract

The powered prosthesis for people with transtibial amputation offers the opportunity to more appropriately restore gait functionality with benefits, such as powered plantar flexion. In particular, various software control architectures provide unique capabilities for regulating the powered prosthesis during gait. One highly novel approach applies the winding filament hypothesis, which enables an advanced modeling of muscle characteristics, such as through introducing the attributes of titin into the muscle model. The objective of the research is to contrast the conventional control architecture of the BiOM-powered prosthesis compared with the winding filament hypothesis control architecture through machine learning classification. Four machine learning algorithms are applied through the Waikato Environment for Knowledge Analysis (WEKA): J48 decision tree, [Formula: see text]-nearest neighbors, logistic regression, and the support vector machine. The feature set is derived from the force signal acquired from a force plate, which is a conventional gait analysis system. The feature set applied five attributes representing temporal and kinetic aspects of the stance phase of gait. The [Formula: see text]-nearest neighbors algorithm achieves the best machine learning classification accuracy of 95%. The preliminary research establishes the foundation for more sophisticated endeavors respective of the powered prosthesis, such as determining the appropriateness of modifying the software control architecture to best accommodate the progressive lifestyle evolutions and adaptations of the person with amputation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research progress of the plantar pressure monitoring system for gait analysis;Chinese Science Bulletin;2023-09-27

2. Importance of Human Gait Analysis in Biometric Recognition using Machine Learning: A Review;2022 6th International Conference on Trends in Electronics and Informatics (ICOEI);2022-04-28

3. Biometrics of ECG Signal through Temporal Organization with Support Vector Machine;2021 International Conference on e-Health and Bioengineering (EHB);2021-11-18

4. An Evolutionary Perspective for Network Centric Therapy through Wearable and Wireless Systems for Reflex, Gait, and Movement Disorder Assessment with Machine Learning;Wireless Sensor Networks - Design, Deployment and Applications;2021-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3