A COMPUTATIONAL STUDY OF DIFFERENT ADDITIVE MANUFACTURING-BASED TOTAL ANKLE REPLACEMENT DEVICES USING THREE-DIMENSIONAL HUMAN LOWER EXTREMITY MODELS WITH VARIOUS ANKLE POSTURES

Author:

WARDHANI PRIMASARI1,TSAI PEI-I2,CHEN PEI-YU3,CHEN YU-YOU1,HSU CHING-CHI1

Affiliation:

1. Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, R.O.C.

2. Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan, R.O.C.

3. Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei 100, Taiwan, R.O.C.

Abstract

Total ankle replacement (TAR) surgery is one of the useful methods to treat ankle arthritis. Selective laser melting that is an additive manufacturing (AM) technique has made it possible to fabricate orthopedic implants. However, there are rare studies to analyze AM implants using finite element method. Thus, the purpose of this study was to investigate the effect of the various porous designs with three types of tibial shapes for five ankle postures using three-dimensional (3D) human lower extremity models. The variable-axis-mobile-bearing (VAMB) TAR models were developed in one solid TAR design and three porous TAR designs on the tibial and talar components. Additionally, three shape designs (curved, flat, and tilted) of the tibial component were also evaluated. Each TAR design was assembled on the human lower extremity model with standing, inversion, eversion, plantar flexion, and dorsiflexion ankle postures. The results showed that there was a minor effect among the solid and porous TAR designs on the implant stability, the bone stress, and the implant stress. However, those performances in the plantar flexion were significantly reduced compared to that in the other ankle postures. Although the porous TAR designs have a higher risk of implant failure and bone breakage, it may have better bone-implant bonding ability. This study could help engineers and surgeons to understand the design rationale and biomechanics of AM-based TAR devices.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3