FINITE-ELEMENT MODELING OF A BEVEL-TIPPED NEEDLE INTERACTING WITH GEL

Author:

ASSAAD WISSAM1,JAHYA ALEX1,MOREIRA PEDRO1,MISRA SARTHAK1

Affiliation:

1. Department of Biomechanical Engineering, MIRA-Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, P.O. Box 217, 7500AE, The Netherlands

Abstract

Deviation of a needle from its intended path can be minimized by using a robotic device to steer the needle towards its target. Such a device requires information about the interactions between the needle and soft tissue, and this information can be obtained using finite element (FE) analysis. In this study, we present an FE analysis that integrates the Johnson–Cook damage model for a linear elastic material with an element deletion-based method. The FE analysis is used to model a bevel-tipped needle interacting with gel. The constants for the damage model are obtained using a compression test. We compare simulation results with experimental data that include tip–gel interaction forces and torques, and three-dimensional (3D) in situ images of the gel rupture obtained using a laser scanning confocal microscope. We quantitatively show that the percentage errors between simulation and experimental results for force along the insertion axis and torque about the bevel edge are 3% and 5%, respectively. Furthermore, it is also shown qualitatively that tip compression is observed at the same locations in both experimental and simulation results. This study demonstrates the potential of using an FE analysis with a damage model and an element deletion-based method to accurately simulate 3D gel rupture, and tip–gel interaction forces and torques.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3