NON-CIRCULAR CHAIN RING ALLOWS A REDUCTION OF JOINT LOADING IN CYCLING

Author:

BISI MARIA CRISTINA1,STAGNI RITA1,GNUDI GIANNI1,CAPPELLO ANGELO2

Affiliation:

1. Department of Electronics, Computer Science and Systems, University of Bologna, Via Venezia 52, Cesena, 47023, Italy

2. Department of Electronics, Computer Science and Systems, University of Bologna, Viale Risorgimento 2 Bologna, 40136, Italy

Abstract

Non-circular (NC) chain rings were primarily designed to improve the mechanical effectiveness of cycling. Their use can be investigated for application in rehabilitation: they could provide a solution to design an effective exercise reducing joint loading. The aim of this study was to analyze the differences in kinematics, energy consumption, and joint moments between circular and NC chain rings, then to identify a profile that can reduce joint loads, maintaining equal mechanical and metabolic works. Five young participants performed two tests on a cycloergometer; one with a circular chain ring and the other with an NC one. The test consisted in 15 min of cycling; during which they were asked to cycle at three different speeds and at two different powers. Stereophotogrammetric and metabolic data were acquired. Statistical analysis was applied on metabolic data. Joint angular velocities were obtained from kinematic data. A two-dimensional (2D) model of cycling was designed to estimate joint moments with both chain rings. A different ring profile was suggested to further reduce joint flexion peak moment. NC chain ring allows a reduction of flexion joint moments with respect to the circular one without significant difference in metabolic and kinematic data. The new profile proposed further decreases maximum knee flexion moment maintaining equal mechanical work.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3