ANALYSIS OF SPECIFIC PARAMETERS FOR SKIN TUMOR CLASSIFICATION

Author:

MESSADI MAHAMMED1,MAHMOUDI SAïD2ORCID,BESSAID ABDELHAFID1ORCID

Affiliation:

1. Biomedical Engineering Laboratory, Department of Electrical and Electronics, Technology Faculty, Abou Bekr Belkaid, Tlemcen University, Tlemcen 13000, Algeria, Laboratory of Biomedical Engineering, Faculty of Technology, University of Tlemcen, Tlemcen 13000, Algeria

2. Computer Science Department, Faculty of Engineering, rue de Houdain 9, Mons B-7000, Belgium

Abstract

During the last years, computer vision-based diagnosis systems have been widely used in several hospitals and dermatology clinics, aiming mostly at the early detection of malignant melanoma tumor, which is among the most frequent types of skin cancer, versus other types of nonmalignant cutaneous diseases. They grow in melanocytes, the cells responsible for pigmentation. This type of cancer is increasing rapidly and its related mortality rate is increasing more modestly, and inversely proportional to the tumor’s thickness. The mortality rate can be decreased by earlier detection of suspicious lesions and better prevention. In this work, we are interested in extracting all specific attributes which can be used for computer-aided diagnosis of melanoma. In the first step of the proposed work, we applied the Dull Razor [Lee T et al., Dullrazor: A software approach to hair removal from images, Cancer Control Research, British Columbia Cancer Agency, Vancouver, Canada, Vol. 21, No. 6, pp. 533–543, 1997] technique to images to reduce the influence of small structures, hairs, bubbles, light reflection. In the second step, a new fuzzy level set algorithm is proposed in order to facilitate the medical image segmentation task. It is able to directly evolve from the initial segmentation proposed that uses a spatial fuzzy clustering approach. The controlling parameters of the level set evolution are also estimated from the results of the fuzzy clustering step. This step is essential to characterize the shape of the lesion and also to locate the tumor to be analyzed. In this paper, we have also treated the necessity to extract all the specific attributes used to develop a characterization methodology that enables specialists to take the best possible diagnosis. For this purpose, our proposal relies largely on visual observation of the tumor while dealing with some characteristics as color, texture or form. The method used in this paper is called ABCD. It requires calculating four factors: Asymmetry ([Formula: see text], Border ([Formula: see text], Color ([Formula: see text], and Diversity ([Formula: see text]. Finally, these parameters are used to construct a classification module based on artificial neural network for the recognition of malignant melanoma.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3