COMPUTATION OF THE DYNAMIC COMPRESSION EFFECTS IN SPINE DISCS USING INTEGRAL METHODS

Author:

CERROLAZA M.1,NIETO F.2,GONZÁLEZ Y.23

Affiliation:

1. International Center of Numerical Methods in Engineering, Polytechnic University of Catalonia, c/Gran Capitá s/n, 08034, Barcelona, Spain

2. National Institute of Bioengineering, Central University of Venezuela, Caracas, Venezuela

3. Faculty of Industrial Engineering, University of Guayaquil, Ecuador

Abstract

The computational modeling using integral methods of dynamic loading and its effects on the nutrients transport in spine discs is addressed in this work. The numerical simulation and analysis was carried out using the Boundary Element Method (BEM) and a 3D model (axisymmetric) of the disc. The boundary model was discretized using linear interpolated elements and a multi-region approach. Concentration and production of three nutrients as lactate, oxygen and glucose were obtained. The maximum lactate concentration was observed very close to the interface between the nucleus and the inner annulus. A relatively simple model discretized with 130 boundary elements yielded very similar results to these coming from more complex FEM-based models. The numerical efforts in the domain and boundary discretizations were optimized using the BEM. Our results are in good agreement with those obtained using with finite element-based models. As expected, the dynamic loading increased the oxygen–glucose consumption and the lactate production, thus leading to a poor oxygen–glucose concentration at the nucleus of the disc. All of that is a favorable environment for a disc degeneration mechanism to be developed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A simple and effective 1D-element discrete-based method for computational bone remodeling;Computer Methods in Biomechanics and Biomedical Engineering;2021-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3